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Abstract

Network hyperexcitability is a feature of Alzheimer’ disease (AD) as well as numerous transgenic mouse
models of AD. While hyperexcitability in AD patients and AD animal models share certain features, the
mechanistic overlap remains to be established. We aimed to identify features of network hyperexcitability in
AD models that can be related to epileptiform activity signatures in AD patients. We studied network
hyperexcitability in mice expressing amyloid precursor protein (APP) with mutations that cause familial AD,
and compared a transgenic model that overexpresses human APP (hAPP) (J20), to a knock-in model
expressing APP at physiological levels (APPNL/F). We recorded continuous long-term electrocorticogram
(ECoG) activity from mice, and studied modulation by circadian cycle, behavioral, and brain state. We report
that while J20s exhibit frequent interictal spikes (IISs), APPNL/F mice do not. In J20 mice, IISs were most
prevalent during daylight hours and the circadian modulation was associated with sleep. Further analysis of
brain state revealed that IIS in J20s are associated with features of rapid eye movement (REM) sleep. We
found no evidence of cholinergic changes that may contribute to IIS-circadian coupling in J20s. In contrast
to J20s, intracranial recordings capturing IIS in AD patients demonstrated frequent IIS in non-REM (NREM)
sleep. The salient differences in sleep-stage coupling of IIS in APP overexpressing mice and AD patients
suggests that different mechanisms may underlie network hyperexcitability in mice and humans. We posit
that sleep-stage coupling of IIS should be an important consideration in identifying mouse AD models that
most closely recapitulate network hyperexcitability in human AD.
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Significance Statement

It is increasingly recognized that Alzheimer’s disease (AD) is associated with hyperexcitability in brain
networks. Brain network hyperexcitability is also reported in several rodent models of AD. We studied
the signatures of this hyperexcitability in two rodent models of AD as well as AD patients. Network
hyperexcitability was prevalent in a transgenic model of AD but was absent in a rodent model that is
considered to be more physiologic. Moreover, while network hyperexcitability was coupled to rapid eye
movement (REM) sleep in transgenic mice, hyperexcitability occurred in non-REM (NREM) sleep in AD
patients. We suggest that brain state coupling of hyperexcitability can be used as a method for
screening animal models of AD.
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Introduction
An increased incidence of seizures in Alzheimer’s dis-

ease (AD) is indicative of an underlying network hyperex-
citability (Hesdorffer et al., 1996; Amatniek et al., 2006;
Lozsadi and Larner, 2006; Vossel et al., 2013; Cretin et al.,
2016). Interictal spikes (IIS) are also seen in a high pro-
portion of AD patients without a history of clinical seizures
(Vossel et al., 2016). Nonictal network hyperactivity has
also been detected by means of fMRI in individuals at risk
of developing dementia, for example in people carrying
the APOE4 allele (Bookheimer et al., 2000; Filippini et al.,
2009), with other genetic predictors of AD (Quiroz et al.,
2010) and also in patients with mild cognitive impairment
(MCI), a diagnosis which is considered to be a prodromal
stage of AD (Dickerson et al., 2005). Network hyperexcit-
ability and seizure activity appear at early stages of the
disease and have been suggested to be predictors of
accelerated cognitive decline (Amatniek et al., 2006;
Vossel et al., 2013; Cretin et al., 2016; Vossel et al., 2016).

Network hyperexcitability has also been reported in
numerous mouse models of AD pathology (Palop et al.,
2007; Minkeviciene et al., 2009; Busche et al., 2012;
Šišková et al., 2014; Kazim et al., 2017), with the aberrant
activity being a feature that occurs in advance of plaque
deposition (Busche et al., 2012; Bezzina et al., 2015).
These phenomenological similarities have led to the sug-
gestion that these animal models can provide a tool by
which to study network hyperexcitability in human AD
(Palop and Mucke, 2016).

Aberrant network activity could in itself contribute to
neurodegeneration and cognitive dysfunction in AD pa-
thology (Cirrito et al., 2005; Bero et al., 2011; Busche and
Konnerth, 2015; Wu et al., 2016). Reducing network hy-
perexcitability has been shown to ameliorate cognitive
dysfunction in both patients and animal models (Bakker
et al., 2012; Sanchez et al., 2012; Haberman et al., 2017),
and to attenuate A� pathology (Yuan and Grutzendler,
2016). Hence, targeting network hyperexcitability has

been suggested as a novel therapeutic avenue for AD.
However, studying this therapeutic avenue by means of
animal models (Sanchez et al., 2012) requires a deeper
understanding of the shared features of network hyper-
excitability between AD patients and animal models.

Expression of epileptiform activity frequently exhibits a
circadian pattern and shows preferential activation with
specific brain states in a range of epilepsies (Quigg, 2000;
Ng and Pavlova, 2013; Sedigh-Sarvestani et al., 2015).
Circadian dysfunction and sleep disruption are common
features of AD and are also considered as early features
of disease pathogenesis (Musiek et al., 2015; Mander
et al., 2016; Musiek et al., 2018). Two recent papers have
reported modulation of epileptiform activity by circadian
cycle and brain state in transgenic AD models. Epilepti-
form activity was more prevalent in daylight conditions,
and was suggested to occur primarily during rapid eye
movement (REM) sleep (Born et al., 2014; Kam et al., 2016).
If epileptiform activity is modulated by circadian cycles
and/or brain state in AD patients, it is possible that this
might contribute to the reported circadian alterations and
sleep dysfunction. In line with this, it has recently been
shown that interictal activity in AD patients is highly prev-
alent during sleep (Vossel et al., 2016; Horváth et al.,
2017; Lam et al., 2017). The modulation of ictal related
activity by brain state points to a distinguishing feature
that could be used to (1) uncover distinct mechanisms
underlying hyperexcitability, and (2) ascertain the transla-
tional utility of specific animal models in studying network
hyperexcitability. To this end, the present study aimed to
investigate circadian and brain state modulation of net-
work hyperexcitability in two rodent models of AD of
differing etiology: one in which human amyloid precursor
protein (hAPP) is overexpressed and one in which APP is
expressed at endogenous levels. In order to shed light on
the translational utility of rodent AD models for studying
network hyperexcitability in human AD, we further exam-
ined sleep-stage modulation of epileptiform activity in two
patients with AD, using recordings from intracranial elec-
trodes placed directly adjacent to the hippocampus.

Materials and Methods
Animals and animal maintenance

All animal procedures were performed in accordance
with the University of Edinburgh animal welfare committee
regulations and were performed under a United Kingdom
Home Office project license.

Heterozygous mice (�/�) expressing hAPP with the
KM670/671NL (Swedish) and V717F (Indiana) mutations
on a PDGF� promoter (J20; Mucke et al., 2000) were bred
by crossing J20 �/� (i.e. animals are heterozygous)
males with C57Bl6J females. Experiments used J20 �/�
(n � 21) and J20-/- (n � 8) wild-type (WT) littermate
controls. The mean age of J20 animals was five months
(range: 3.3–6.5 months).

Homozygous knock-in mice expressing APP KM670/
671NL (Swedish) and APP I716F (Iberian) mutations (AP-
PNL/F; Saito et al., 2014) were back-crossed onto C57Bl6J
strain for at least three generations and were �99.8% co-
genic with C57Bl6J. Experiments used APPNL/F �/� (n �
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20) and age-matched nonlittermate C57Bl6J WT controls
(n � 15). Animals were either eight or 12 months of age.

Both male and female mice were used. Mice were kept
on a 7/19 h light/dark cycle in standard, open cages. Mice
were group-housed before surgery and were housed in-
dividually postsurgery and during telemetry data acquisi-
tion.

Surgery and data acquisition
A subdural intracranial electrocorticogram (ECoG) re-

cording electrode was positioned in the cortex overlying
the hippocampus (coordinates x: �2.25; y: �2.46). A
reference electrode was implanted either in the skull of the
contralateral hemisphere, or above the cerebellum. Elec-
trodes were either bare wire, or skull screws. An EEG
transmitter (A3028B, Open Source Instruments) was im-
planted on the back of the animal subcutaneously. Ani-
mals were left to recover for at least 24 h after surgery
before the commencement of telemetry data acquisition.
Telemetric ECoG data were acquired for �3 d from each
animal. Recording was either conducted continuously be-
tween days 1 and day 3 after surgery, or day 1, followed
by day 5 to day 6.

ECoG data were acquired using an Opensource Instru-
ments data acquisition system at 512 sps as previously
described (Chang et al., 2011).

Video data were acquired using a Basler acA1300-60gm
GigE camera sampling at 10 fps, or a Logitech C270 HD
webcam sampling at 5 fps. Video was acquired during the
daylight hours.

ECoG data processing
The raw ECoG data were analyzed using custom writ-

ten Tcl and C processors. ECoG data were analyzed in
8-s intervals. For each interval we extracted measures of
data loss, spike count, � power (0.1–3.9 Hz) and � power
(4–12 Hz). We defined intervals in which data loss ex-
ceeded 20% of samples as “lossy” intervals. Intervals in
which � power exceeded 0.16 mV2 were classified as
artifacts. Lossy and artifact intervals were excluded.

IIS in rodent ECoG were detected as follows. Each 8-s
interval of EEG was treated as a two-dimensional path.
One dimension is voltage, which was normalized by di-
viding by the mean absolute step size of the voltage in the
8-s interval. The mean absolute step size is the sum of the
absolute changes in voltage from one sample to the next,
divided by the number of samples. For an 8-s interval, the
number of samples would be 4096 and a typical mean
absolute step size for mouse EEG is around 12 �V. The
other dimension is time, which was normalized by dividing
by the sample period. The spike-finder proceeds along
this EEG path in steps. With each step, it moves to the
nearest sample on the path ahead. Whenever the spike-
finder steps past one or more samples, it classifies these
samples as an aberration in the path. Solitary aberrations
larger than 20 mean absolute step sizes are classified as
IIS. A series of IIS in which single spikes were separated
by �78 ms (40 samples) were treated as a burst event and
counted as one IIS event within the 8-s interval.

For each J20 animal, the false positive rate of IIS de-
tection was determined by randomly hopping through 100

8-s intervals identified by the processor as containing IIS
and scoring them as true or false positives. The animal
was excluded from analysis if the false positive rate ex-
ceeded 10%. One animal was excluded from analysis on
this basis. In the remaining animals, the false positive rate
ranged from 0% to 6% (mean false positive rate: 1.9%).

We observed that lossy and artifactual intervals resulted
from movement and external sources of interference. We
could not exclude the possibility that these events are non-
randomly distributed across the 24-h cycle. Nonrandom
exclusion of intervals would impact the evaluation of cou-
pling of IIS. We thus set a criterion: if �5% of all 8-s
intervals were excluded due loss or artifact, the animal
was excluded from calculations of coupling of IIS to cir-
cadian cycles, sleep-wake, and �/�. Two J20 animals
which were included in Figure 1 were excluded from data
reported in Figures 2–4 on this basis (25% and 16% of 8-s
intervals excluded in these animals).

Video analysis
Video data were manually scored to classify periods as

“sleep” or “wake.” Based on previous reports, sustained
inactivity �40 s was classified as sleep, while stationary
periods �40 s and periods of movement were classified
as wake (Pack et al., 2007). Postural shifts during sleep
epochs did not break sleep epochs.

Immunohistochemistry and imaging
Animals were killed by transcardial perfusion with

N-methyl-D-glucamine (NMDG)-based saline solution (92
mM NMDG, 2.5 mM KCl, 1.25 mM NaH2PO4, 20 mM
HEPES, 30 mM NaHCO3, 25 mM glucose, 10 mM MgCl2,
0.5 mM CaCl2, and sucrose to adjust osmolarity to 315–
330 mOsm). Brains were postfixed with 4% paraformal-
dehyde for 24 h then washed and stored in PBS. Samples
were put in 50% or 30% sucrose, PBS solution and 50%
OCT solution for 24 h before cutting, then placed in the
same solution and cut using a freezing microtome.

Fifty-micrometer sections were stored in PBS at 4°C.
Slices were presoaked with 5% rabbit normal serum
(RNS; Vector S-5000), 0.2% Triton X-100, PBS solution
for 30 min at room temperature (RT), followed by incu-
bation with 3% RNS, 0.2% Triton X-100, anti-choline
acetyltransferase (ChAT; 1:500, Millipore #AB144P, RRID:
AB_2079751), PBS solution for 48 h at 4°C. The sections
were washed three times with PBS 0.2% Triton X-100 for
5min each and then incubated in 3% RNS, anti-goat
biotinylated (1:200), DAPI (1:5000, Sigma D9542-1MG),
PBS solution for 1 h at RT. After 3 PBS 0.2% Triton X-100
washings of 5min each, the sections were incubated with
ABC reagent (Vectastain PK-6105 kit) prepared half an
hour before using and stored in foil at 4°C containing
0.1% of A, 0.1% of B, 0.01% Triton X-100, PBS for 1 h at
RT. After six PBS washings of 10 min each, the sections
were put in three 3’-diaminobenzidine (Sigma D5905-
50TAB), 0.02% CoCl2 (1% wt/vol), 0,04% (NH4)2Ni(SO4)2
(1% wt/vol) dH20 solution for 30 min at 4°C over agitation.
Then stained by adding 1.2% of fresh 1% H202 per slice
for 10–20 s until the slice darkened. The slices were then
transferred and washed in PBS, six times for 10 min each,
mounted on a slide and dried for 30 min at 50°C then
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finally covered with Mowiol Embedding Medium and cov-
erslips. Slides were stored at RT.

Imaging was performed on a Zeiss AX10 microscope
using StereoInvestigator Software with a 5x/0.16 (420630-
9900) apochromat air objective. Quantification was performed
using StereoInvestigator Software “Optical Fractioner Work-
flow” probe with the following settings. Thickness of 50
�m was manually defined, and regions were selected
using a 1.25x/0.03 (420310-9900) apochromat air objec-
tive for low magnification and then counted with a 10x/
0.45 (420640-9900) apochromat air objective for high
magnification. The border between medial septum (MS)
and diagonal band of Broca (DB) was defined as a line
between the two major island of Caleja. The regions were
separated using different lines. The counting frame used
was a square of 75-�m size and the grid was a square of
150-�m size. The counter was blind to genotype.

Oral administration of Donepezil
Donepezil hydrochloride (Sigma Aldrich, D6821) was

orally administered in a jelly. Mice were trained to volun-
tarily consume jelly following the protocol described by
Zhang (2011). Mice were given placebo jelly or a jelly
containing a Donepezil dose of 1.8 mg/kg. For experi-
ments studying the effects of Donepezil on acetylcholin-
esterase (AChE) activity, jelly was given at 8 A.M. daily.
For experiments studying the effects of Donepezil on IIS,
jelly was given daily at either 8 A.M., or 8 P.M. to assess
interactions of AChE modulation and circadian cycle.
Since there was no effect of AChE on IIS, results were
pooled.

AChE assay
Quantitative measurements of AChE enzymatic activity

were made using a modified Ellman method (Ellman et al.,
1961; Rosenfeld et al., 2001). Stock solutions were acetyl-
thiocholine iodide, used as the enzymatic substrate
(ATH; 1.7 mg/ml in PBS, Sigma-Aldrich), 5,5’-dithio-bis(2-
nitrobenzoic acid) (DTNB; 0.8 mg/ml in PBS, Sigma-
Aldrich). Briefly, brains were rapidly dissected from either
WT or J20 mice. Neocortex was isolated, weighed, and
then homogenized using a Pellet Pestle (Sigma, Z 359971)
in nine volumes of 0.1 M sodium phosphate buffer (pH
7.4; Patel et al., 2014). Five microliters of brain homogenate
was aliquoted into each well of a 96-well plate, volume made
up to 200 �l with PBS. DTNB (50 �l from stock) was
added, followed by 50 �l of ATH substrate from stock.
Measurement of absorption at 450 nm began immediately
(�2 h from dissection) and was measured every 5 min for
up to 30 min using a MRX microplate reader (Dynex
Technologies). Thiocholine production in the test wells
was expressed in units of nmol/min, calibrated with ref-
erence to the absorbance change over a range of con-
centrations giving a linear response using glutathione as
the DTNB reactant (Eyer et al., 2003). Neostigmine (10
�M, Sigma-Aldrich) was used to completely inhibit AChE
activity and establish that there was no baseline drift
during the measurements.

Human scalp EEG and foramen ovale (FO) electrode
recordings

Human scalp EEG and FO electrode recordings were
performed at the Massachusetts General Hospital, as
described in detail previously (Lam et al., 2017). Scalp
EEG electrodes were placed using the International 10-20
system, with additional T1 and T2 electrodes.

Sleep staging in patient data were performed by a board-
certified clinical neurophysiologist (ADL) based on visual
analysis of the full scalp EEG data. While dedicated electro-
oculogram and electromyogram channels were not re-
corded for these studies, the frontopolar scalp EEG
electrodes allowed assessment of eye movements, while
the frontopolar, frontal, and temporal electrodes allowed
assessment of myogenic activity. Scalp EEG data were
reviewed in 30-s epochs in the longitudinal anterior-posterior
bipolar montage, using the Python module wonambi
(https://github.com/wonambi-python/wonambi). Each
30-s epoch was classified as awake, non-REM (NREM)1,
NREM2, NREM3, or REM, based on the American Acad-
emy for Sleep Medicine’s manual for sleep scoring.

Spike quantification in patient data were performed by
a board-certified clinical neurophysiologist (ADL), using a
custom-made GUI in MATLAB (Mathworks). The GUI dis-
played 15-s epochs of left and right sided FO data, in both
bipolar and common reference montages (common refer-
ence � C2), along with the EKG trace to allow exclusion
of EKG artifact. The reviewer could adjust amplitudes for
each trace as needed. For the MCI patient analyzed,
contact #3 from the left FO electrode did not record
properly and was excluded from analysis. The reviewer
marked all spikes in each epoch. Epochs were presented
in consecutive order, but the reviewer was otherwise
blinded to the sleep stage for each epoch during the
review. Instantaneous spike rates were calculated by de-
termining the total number of left FO and right FO spikes
detected within all 30-s epochs of the recording (which
corresponded to the sleep staging epochs above) and
converting these rates to spikes per hour. Average spike
rates within each sleep stage were calculated by sum-
ming the total number of spikes that occurred during each
sleep stage and dividing by the total number of hours the
patient spent in each respective sleep stage in the
recording.

Spectral analysis of the FO electrodes was performed in
MATLAB, using the freely available Chronux toolbox (Mi-
tra and Bokil, 2007). Analysis was performed on the LFO1,
LFO2, RFO1, and RFO2 channels, as these were the
deepest contacts and thus least prone to noise or artifact.
Channels were each normalized to zero-mean, unit-
variance. Multi-taper spectrograms were calculated for each
normalized channel, using the Chronux script mtspec-
gramc with the following parameters: frequency range:
1–20 Hz, window: 30 s; step size: 30 s; time-bandwidth
product: 3, tapers: 5. This provided a spectral resolution
of 0.2 Hz. An average spectrogram across all FO channels
was then generated, and the average spectral powers
within the �-band (0–4 Hz) and �-band (4–12 Hz) were
then calculated.
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Statistics
Statistical data analysis was performed using R (version

3.2.0) including the “dplyr” (Wickham and Francois, 2015)
and ggplot2 (Wickham, 2009) packages.

Assumptions for parametric tests were tested using
Q-Q plots and residual plots. Data transformations or
nonparametric tests were used for two-group compari-
sons in which test assumptions were violated.

For evaluating the effects of the fixed effects of age and
genotype on the proportion of intervals containing more
than one spike in APPNL/F animals, the data first under-
went a square-root transformation and then fit using a
linear model:

�Interval Proportion � Age � Genotype � �

where � is the error term.
The time of IIS was treated as circular variable. Each

interval in which one or more IISs were detected was
considered an event. The time of each event was evalu-
ated as a phase of a circadian cycle. Circular data were
analyzed using circular statistics by means of the “circu-
lar” package (Agostinelli and Lund, 2013). Circular outliers
were identified using “CircOutlier” package (Rambli et al.,
2016).

For tests entailing random variables, linear mixed mod-
els were fit using “lme4” (Bates et al., 2015). Significance
was tested using a log-likelihood test comparing the full
model to a null model without the factor of interest.

For evaluation of the relationship between spike count
and �/�, we described each �/� value as a member of one
of three levels: (1) �/� 	 1; (2) 1 � �/� 	 2, and (3) �/� � 2.
We then modeled spike count (Poisson-distributed) as a
function of levels of �/�, using the R package “MCM-
Cglmm” (Hadfield, 2010). It should be noted that due to
poor properties of a single model fitted across all animals
(fitting animal as a random effect and �/� factor as a fixed
effect), separate models were fitted to individual animals
without including a random effect. Thus, the data do not
allow for inference about the population.

Event-triggered averages of IISs were evaluated by
considering each interval in which an IIS was detected as
an event. If no intervals within �80 s around the event
were excluded, then the 160-s window was included in
the calculation of the event-triggered averages, else the
event was excluded from the averaging. An event-triggered
average was also evaluated around 2000 randomly sampled
points.

For comparing �/� in intervals with IIS to �/� in intervals
preceding IIS, we considered only interval pairs where the
preceding interval did not contain IIS and fit the model

(�/�)1/4 � Index � Subject � �

where Index was a factor labeling whether the interval
contained IIS or the preceding interval and modeled as a
fixed effect, and Subject was a random effect with a
random intercept.

For comparison of ChAT� cells between genotypes,
the model used was:

Estimated Count � Genotype � Region � Subject � �

where Genotype and Region were fixed effects and Sub-
ject was a random effect with a random intercept.

To study the effect of genotype and treatment of the
Thiocholine production rate, the data of Thiocholine pro-
duction was log-transformed. The model used was

log (Thiocholine Rate) � Genotype Treatment
� Repeat ID � �

where GenotypeTreatment was a fixed effect and Re-
peatID was a random effect with a random intercept. Post
hoc tests for the linear model were performed using pack-
age “multcomp” with the Holm correction method (Hothorn
et al., 2008). It should be noted that while the treatment
levels of control and donepezil were independent, the
neostigmine treatment was applied to a sample of WT
control tissue and thus was not independent. This re-
peated factor was not accounted for in the model.

Significance was tested using 
 � 0.05. Two-sided
hypothesis testing was used.

Superscripts following statistical reporting in the results
section refer to the statistical table (Table 1).

Code and data accessibility
The processor script used for quantification of IIS, �, and

� power in rodent ECoG data are available from http://
www.opensourceinstruments.com/Electronics/A3018/HTML/
SCPP4V1.tcl.

Code used for quantifying IIS in human data are avail-
able from https://github.com/mauriceaj/GUI-EEG_Spike_
Annotation.

The datasets used for Figures 1–6 (rodent data) are
available from http://dx.doi.org/10.7488/ds/2319.

Results
Network hyperexcitability in mouse models of AD
pathology

To establish circadian patterns of network hyperexcit-
ability in J20 mice, we recorded ECoG activity from freely-
moving J20 and littermate WT mice using wireless
telemetry over a period of 3 d. As network excitability has
been suggested to be an early event in AD pathogenesis
(Vossel et al., 2013; Sarkis et al., 2016), we focused our
study on ages which precede overt plaque pathology in
J20s (Mucke et al., 2000).

As previously reported (Palop et al., 2007), nonseizure,
IIS (Fig. 1A) were detected in J20 ECoG (note that while
ictal activity was not assessed, we refer to these as interictal
events due to the similarity with IIS that have been re-
ported in the literature) . We applied automated event
detection (see Materials and Methods), on 8-s intervals of
continuous ECoG. The percentage of intervals in which 1
or more spikes were detected was negligible in WTs
(mean percentage: 0.8%, SD � 0.7%, n � 8). In contrast,
the percentage of intervals with 1 or more spikes was
greater in J20s (mean percentage: 11.6%, SD � 5.1%, n �
18; t(23.98) � 10.6, p � 0.0001, t test on square root
transformed data with Welch correction; Fig. 1B,C)a.
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Seizures and IIS have been reported in numerous strains
of transgenic mice that express hAPP and that exhibit A�
pathology (Del Vecchio et al., 2004; Palop et al., 2007;

Minkeviciene et al., 2009; Rasch and Born, 2013). How-
ever, it has been suggested that such network hyperex-
citability is the result of overexpression of hAPP (Born

Table 1. Statistical table

Data structure Type of test
Confidence/Credible interval (CI)
parameter 95% CI

a Normal (square root
transformed)

t test Difference of means of square
root data

(0.20, 0.30)

b Normal (square root
transformed)

Linear mixed model �-Genotype (�0.01, 0.03)
�-Age (�0.02, �0.002)

c IIS count data (analyzed with
log-link function)

MCMC generalized
model

Difference between estimates of
�/� � 1 vs �/� � 2; provided for
animals JF221, JF220, JF218, J0460,
and J0456, respectively

(1.619, 2.122)
(0.261, 0.471)
(0.254, 0.478)
(1.166, 1.392)
(2.128, 2.372)

d Normal (fourth root
transformed)

Linear mixed model �–Index (�0.004, 0.008)

e Normal Linear mixed model �-Genotype (�1015.7, 1029.0)
f Non-normal Wilcoxon-signed rank test Difference of medians (0.08, 0.65)
g Normal (log transformed) Tukey contrasts J20_Ctrl - WT_Ctrl (�0.24, 0.03)

WT_DPZ - WT_Ctrl (�0.15, 0.12)
J20_DPZ - WT_Ctrl (�0.08, 0.19)
WT_NSTG - WT_Ctrl (�1.50, �1.23)
WT_DPZ - J20_Ctrl (�0.04, 0.23)
J20_DPZ - J20_Ctrl (0.02, 0.29)
WT_NSTG - J20_Ctrl (�1.40, �1.13)
J20_DPZ - WT_DPZ (�0.07, 0.21)
WT_NSTG - WT_DPZ (�1.49, �1.22)
WT_NSTG - J20_DPZ (�1.56, �1.29)

h Normal Paired t test Difference of mean IIS rate (�0.01, 0.03)

A

B C D

Figure 1. IISs are prevalent in J20 mice but not in APP knock-in mice. A, ECoG trace recorded from a J20 mouse showing IIS. Inset
is 250-ms expansion around IIS event marked by �. B, Empirical cumulative distribution frequency plots for individual animals
quantifying the number of detected IIS in 8-s intervals across 3 d of recording in WT and J20s. Colors represent distributions for
individual animals. C, Plot showing the proportion of intervals with one or more detected IIS in WT and J20. D, Plot showing the
proportion of intervals with one or more detected IIS in WT and APPNL/F at eight and 12 months. Bars represent medians. Whiskers
extend to 1.5 interquartile range and data points outside of this range shown as points; ���p � 0.001.
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et al., 2014). To determine whether network hyperexcit-
ability is associated with A� pathology in the absence of
hAPP overexpression, we performed telemetric ECoG re-
cordings as above, in mice expressing the humanized A�
sequence of APP (APPNL/F; Saito et al., 2014) and age-
matched controls. We recorded from mice at ages preced-
ing overt plaque pathology (eight months) and at ages
where plaques begin to appear (12 months; Saito et al.,
2014; Masuda et al., 2016). We found no significant effect
of genotype in the proportion of intervals containing
spikes between WT and APPNL/F (F(2,32) � 3.1, R2 � 0.11,
p � 0.06; Fig. 1D)b with a negligible proportion of intervals
with one or more spikes detected [mean percentage of
intervals with one or more spikes, pooled across geno-
type and age � 1.2%, 95%CI (0.8%, 1.6%)]. A post hoc
power calculation based on the effect size from the J20
group (Cohen’s d � 2.5) and the sample sizes of the
APPNL/F and WT groups yielded a power of �0.99 at 
 �
0.05 for an effect of genotype. Hence, we conclude that
APPNL/F mice show no evidence of network hyperexcit-
ability compared to control animals.

Circadian coupling of IIS
It has been suggested that seizure-related activity shows

circadian fluctuations in epilepsies (Quigg, 2000). Hence,
we next asked whether the likelihood of IIS in J20s varies
across the day/night cycle. Quantifying the number of IIS
per hour revealed that IIS are more frequent during day-
light hours (inactive phase; Fig. 2A). We used circular
statistics to extract measures of the phase coupling of IIS
to the circadian cycle within individual J20 animals (see
Materials and Methods). To evaluate the degree of phase
coupling of IIS in each animal, we evaluated the mean
angular vector length (�) from the time of IIS. � can vary
between 0 (no phase coupling) and 1 (perfect phase
coupling). To evaluate the time to which IISs were cou-
pled, we extracted the mean coupling phase off IIS, ex-
pressed as a time on a 24-h cycle (�IIS).

The distribution of IIS phases differed significantly from
a random distribution in all animals (Rayleigh test of uni-
formity: p � 10�11). The extent of phase coupling was
variable across the sample of J20s (mean �IIS � 0.24, SD �
0.13, n � 16; Fig. 2B).

Evaluating the coupling phase revealed that IIS oc-
curred predominantly in the light condition (Fig. 2A).
Across the sample of J20s, the mean �IIS (�IIS) confirmed
this (�IIS � 15h05, � �0.38, n � 16, p � 0.0001, Rayleigh’s
test; Fig. 2B). Inspection of the �IIS distribution revealed
potential outliers. Testing for outliers on a circular distri-
bution (Rambli et al., 2016) identified four outliers. These
four animals were among the five that showed a cluster of
weakest phase coupling as measured by �IIS (range: 0.06–
0.11). We used the upper bound of the range of �IIS of the
four outlier animals to classify phase coupling as weak or
strong. Henceforth, we refer to the five animals with �IIS 	
0.11 as showing weak phase coupling, and the other 11
animals as showing strong phase coupling (�IIS � 0.17).

Sleep/wake modulation of IIS
Since IIS predominantly occurred in the normal inactive

phase of the circadian cycle, we next asked whether this

circadian modulation of IIS could be accounted for by the
sleep/wake state of the animals. In a subset of J20s, we
acquired simultaneous video recordings while recording
ECoG data (n � 4). We manually scored the video and
classified periods as sleep or wake (see Materials and
Methods). Two of these four J20 animals showed strong
circadian phase coupling of IIS, and two showed weak
phase coupling. For the two animals that showed strong
phase coupling of IIS, IIS occurred more frequently in
sleep than during waking (Fig. 3A,B). In contrast, the
modulation of IIS probability did not show a consistent
pattern in animals showing weak phase coupling (Fig. 3B).
This suggests that the strong phase coupling of IIS may
be accounted for by differences in behavioral state across
the circadian cycle.

Brain state modulation of IIS in J20 mice
Sleep-related ictal and interictal activity is differentially

modulated by REM and NREM sleep in different forms of
epilepsy (Bazil and Walczak, 1997; Herman et al., 2001;
Sedigh-Sarvestani et al., 2014; Ewell et al., 2015). REM
and NREM can be distinguished by the relative power in
the � (defined here as 0.1–3.9 Hz) and � (4–12 Hz) fre-
quency bands, with high �/� associated with REM (Ewell
et al., 2015) as well as waking exploration (Buzsáki, 2002).
Thus, we next asked whether IIS are more likely to occur

Figure 2. Circadian modulation of IIS. A, Circular histogram of IIS
counts over 3 d of recording in an individual J20 mouse plotted
on 24-h cycle. Light condition indicated by shading. For the
animal shown, �IIS � 14 h 51 min and � � 0.35. B, Summary data
for �IIS versus � for all animals, shown on circular plot. Solid
symbols are strongly-coupled animals. Weakly coupled animals
are shown with orange fill.
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in particular brain states. To this end, we performed spec-
tral analysis of the ECoG data from a subset of the mice
(n � 5 J20s) in which a reference electrode was implanted
at cerebellar coordinates (a noncortical reference for de-
tection of cortical rhythms). ECoG recordings from J20
mice, exhibited periods showing a peak in �-band power
when animals were either awake (i.e., moving) or asleep,
while periods of elevated �-band power were seen during
sleep (Fig. 4A). We evaluated the �/� ratio for each 8-s
interval and related it to the number of IIS in the interval.
Transient increases in �/� were observed during sleep and
were associated with increased occurrences of IIS (Fig. 4B).

To quantify whether IIS were more likely in particular
brain states, we next investigated the relationship be-
tween �/� and IIS count/8-s interval. As we were inter-
ested in discriminating between REM and NREM sleep,
we limited the analysis to daylight hours when animals are
more likely to be asleep. We used a value of �/� �1 and
�2 to classify periods as NREM-like and REM-like, re-
spectively (Ewell et al., 2015). This revealed significantly
higher spike counts during REM-like versus NREM-like
periods in all five animals (p � 0.0005 for all five animals,
Markov Chain Monte Carlo generalized linear model; Fig.
4B)c. Interestingly, IISs were associated with increased
�/� in animals showing both weak and strong phase
coupling (Fig. 4C). Since sleep and wake are not predic-

tive of IIS in animals with weak phase coupling, this
suggests that there is a mismatch between �/� and be-
havioral state in animals with weak phase coupling. More-
over, high �/� states are predictive of IIS, regardless of
behavioral state.

To examine the temporal dynamics of �/� around IIS,
we evaluated the IIS-triggered average of �/� (Sedigh-
Sarvestani et al., 2014) for 160-s window around each
interval in which at least one IIS was identified. In all
animals, �/� was increased around the time of IIS relative
to �/� averaged around randomly sampled points (Fig.
4D). In three strongly phase-coupled animals, �/� returned
to baseline levels within the 160-s window around the
event. However, in the weakly phase coupled animals, �/�
remained elevated above baseline levels in this window.
The peak in the �/� IIS-triggered average did not occur at
t � 0 in any of the animals. Since intervals neighbouring
the IIS-containing interval show increased �/�, this sug-
gests that the IIS contribution to spectral power did not
underlie the association between increases in �/� and IIS
probability. To further examine whether IIS could directly
contribute to the increased �/�, we compared �/� in inter-
vals with IIS to �/� in the preceding intervals only in cases
where the preceding interval contained no IIS. We found
no significant difference in �/� between intervals with IIS
and the preceding interval (linear mixed model, 
2(1) �
0.35, p � 0.56; data not shown)d.

To determine whether the spectral ECoG patterns in
J20 mice are a reflection of normal sleep or a result of
pathology, we performed similar analysis of video-scored
ECoG data from three WT mice. As in the J20, intervals of
strong � power were evident during wake and sleep, while
periods of prominent �–band activity were seen in sleep.
Transient increases in �/� during sleep akin to those seen
in J20s were also observed in all WT animals, suggesting
that such increases are a feature of normal sleep, and not
pathologic (Fig. 5). To compare the distribution of �/�
during sleep between genotypes, we calculated the range
and 90th percentile of �/� while animals were asleep
(using data for which we had video scoring). Group sizes
were too small for statistical comparison but suggested
that �/� values spanned a narrower range in J20 mice than
in WT mice [J20 mean range � (0.02, 10.0), 90th percen-
tile � 2.4, SD(1.1), n � 4; WT mean range � (0.04, 19.3),
90th percentile � 5.4, SD(1.4), n � 3; data not shown].

No evidence of cholinergic changes in J20 mice
Cholinergic levels exhibit a circadian modulation (Hut

and Van der Zee, 2011), and high cholinergic tone is
implicated in generating � oscillatory states (Buzsáki,
2002). In addition, cholinergic dysfunction has been sug-
gested to be a key feature of AD pathogenesis (Craig
et al., 2011). Recently, it has been suggested that cholin-
ergic alterations may contribute to network excitability in
the Tg2576 model of AD (Kam et al., 2016). Hence, we
hypothesized that cholinergic changes might underlie the
brain-state dependent modulation of IIS in the J20 mice.
We used immunohistochemistry to quantify the number of
ChAT� cells in the MS and DB and asked whether the
number of ChAT� cells differs between J20 (n � 7) and

A

B

Figure 3. The probability of IIS is modulated by behavioral state
in strongly phase-coupled animals. A, IIS count/8-s interval ver-
sus time over 2 h of ECoG recording in a J20 mouse, with sleep
and wake indicated by shading. Bi, Mean spike rate in sleep and
wake condition for strongly and weakly phase coupled animals.
Error bars: 95% Confidence intervals (CI). Bii, Circular histo-
grams for a strongly (left) and weakly (right) phase coupled
animals using conventions as in Figure 2A.
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WT (n � 5) mice. Fitting a linear mixed model to the data,
we found no effect of genotype on the estimated number
of ChAT� cells in the MS or DB (linear mixed model, 
2(1) �
0.0002, p � 0.99; Fig. 6A)e.

AChE activity is reduced in AD (García-Ayllón et al.,
2011). We assayed cholinergic function by measuring
AChE activity. AChE activity was quantified by estimating
the rate of thiocholine production in neocortical brain

homogenates (see Materials and Methods). There was no
significant difference in the rate of thiocholine production
in brain homogenates prepared from WT and J20 mice
(V � 15, p � 0.06, n � 5 WT/J20, Wilcoxon signed rank
test, matched by day of assay; Fig. 6B)f. We also wanted
to directly test the effect of modulation of ACh levels on
IIS. However, using oral administration of Donepezil at a
dose previously suggested to achieve clinically relevant

B C D

A

Figure 4. IIS occur during high �/� states. A, 8-s ECoG signals (left) and corresponding power spectra (right) during different
behavioral states recorded from a J20 mouse. A single IIS is seen in the sleep high � state (ii). B, Time series of � power, � power,
�/�, and spike count per 8-s intervals across 2 h of ECoG recorded from the same J20 mouse as shown in A. Black/gray symbols
indicate sleep/wake as classified by simultaneous video data. Red symbols and vertical dotted lines indicate the 8-s intervals for
which the ECoG signal is shown in A. C, Spike number per 8-s interval as a function of �/� in five animals (represented by different
colors and connected by lines). The increase spike count in intervals with high �/� was seen in animals with both strong (filled symbols)
and weak (open symbols) circadian phase coupling; ���p � 0.001. D, IIS-triggered averages of �/� for five individual animals (black)
and windowed averages triggered around 2000 randomly sampled points (gray) show an increased �/� around IIS. Strong/weak
coupling shown in filled/open symbols. Error bars in B, C represent 95% CI.
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drug plasma levels (Dong et al., 2009) was ineffective at
altering AChE activity in brain homogenates. In contrast, a
positive control treatment of direct application of neostig-
mine to brain homogenate led to a significant reduction in
AChE activity (linear mixed model: 
2(4) � 73.5, p �
0.0001; post hoc using Tukey paired comparisons: p �
0.0001 for neostigmine versus each of the treatment and
genotypes; p � 0.05 for all other group comparisons; Fig.
6B)g. Two days of oral Donepezil administration at this
dose did not affect the IIS rate in J20 mice (t(11) � 0.8, p �
0.43, paired t test; data not shown)h.

Sleep stage modulation of IIS in human AD
The first intracranial recordings in humans with AD were

recently reported and demonstrated marked activation of
mesial temporal lobe (mTL) IIS during sleep compared to
the awake state (Lam et al., 2017). We further analyzed
the combined scalp EEG and intracranial electrode re-
cordings from these two patients to better understand the
relationship between sleep stage and mTL IIS rate in AD

patients. One patient with advanced AD did not achieve
REM sleep but showed mTL IIS preferentially during
NREM sleep as opposed to waking states (Table 2,
patient 1). The second patient was a 67-year-old woman
with amnestic MCI (aMCI), an early stage of AD that is
thought to correspond to the early stage of AD modeled in
our young J20 mice. The data from this patient were used
to compare the frequency of IIS in wake, NREM, and REM
states.

We analyzed 14.25 consecutive hours of combined
scalp EEG and FO recordings from the aMCI patient, which
spanned from �7 P.M. on the first day of FO recording
(FOD1) to 9:15 A.M. the following morning (FOD2). Further
recordings were not analyzed, as the patient was initiated on
treatment with the anticonvulsant levetiracetam on the after-
noon on FOD2. Of note, the patient underwent implanta-
tion with FO electrodes on FOD1 from �12:40 to 1:50
P.M. and received sevoflurane, Propofol, and midazolam
during the procedure. She was awake and answering
questions appropriately by 2:15 P.M. on FOD1.

A

B

Figure 5. Transient increases in �/� are nonpathologic features of sleep. A, 8-s ECoG signals (left) and corresponding power spectra
(right) during different behavioral states recorded from a WT mouse. B, Time series of � power, � power, and �/� per 8-s interval across
2 h of ECoG recorded from same WT mouse as shown in A. Black/gray symbols indicate sleep/wake as classified by simultaneous
video data. Red symbols and vertical dotted lines indicate the 8-s intervals for which the ECoG signal is shown in A.
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We performed sleep staging of the recording using the
full scalp EEG data and measured mTL spike rates using
the bilateral FO electrode data (Fig. 7A,B). As described
previously, we found that mTL spiking in the aMCI patient
was largely activated during sleep. In contrast to what we
found in the young J20 mice, mTL spiking in the aMCI
patient occurred with highest frequency during NREM
sleep stages, particularly during NREM3, and were lowest
during REM sleep (Fig. 7; Table 2). mTL IIS rates during
REM sleep were also markedly lower than during wake-
fulness (Table 2). We also calculated spectral power in the
�- and �-bands, as well as the �/� ratio, in the FO elec-
trodes across sleep states (Fig. 7C–E). Increases in both �
and � power were seen with deepening stages of NREM
sleep, while a reduction was seen with REM sleep. In
contrast to what we observed in the J20 mice, the �/� ratio

was reduced during periods of highest spike frequency
(Fig. 7E).

Discussion
Network hyperexcitability is a feature of AD. Here, we

compared patterns of network hyperexcitability in two
rodent models of AD, as well as in two AD patients, to
reveal shared phenomenological features with the disease.
We show that while J20 (hAPP overexpressing) mice exhibit
frequent IIS as previously reported, APPNL/F mice (which
express APP at physiologic levels) do not show evidence of
network hyperexcitability. Moreover, IIS in J20s occur
primarily during daylight hours, and this circadian fluctu-
ation is accounted for by an increased probability of IIS
during sleep. Interestingly, we found that IIS in J20 mice
are modulated by brain state, with increased likelihood of
IIS in brain states with high �/� activity, a marker of REM
sleep. In contrast, patients with AD showed prevalent IIS
during NREM sleep. Moreover, in the one AD patient who
exhibited REM sleep, IIS frequency was lowest in REM
compared to other states.

Circadian dysfunction and network hyperexcitability
in AD

Brain network hyperexcitability in the form of IIS and
seizures has now been reported in numerous models of
AD pathology (for review, see Scharfman, 2012; Born,
2015). Our data, along with those reported by others (Born
et al., 2014; Kam et al., 2016) reveal that network hyper-
excitability in animals models of AD can be modulated by
the circadian cycle. Circadian disturbances in AD include
sleep fragmentation, increased daytime somnolence, and

BA

Figure 6. No evidence of cholinergic alterations in J20s. A, Immunostained brain section showing ChAT� cells in MS and DB. Lower
panel shows zoomed in region of upper panel (left) and corresponding regions of a negative control stained section (right). Upper right:
Quantification of stereological estimates of ChAT� cell count in MS and DB in WT and J20. Points represent estimated counts in
individual animals. B, AChE activity was assayed by the rate of thiocholine production in brain homogenate from WT and J20 in control
conditions and following oral administration of Donepezil (DPZ). The AChE activity was compared to a positive control of direct
application of neostigmine (10 �M) to the brain homogenate. Experimental repeat groups are indicated by different colors and
connected lines; ���p � 0.001.

Table 2. Average mTL spike rates were evaluated from FO
electrodes and related to sleep stage as assayed by scalp
EEG in two patients with AD

Patient 1 (AD dementia) Patient 2 (aMCI)

Sleep stage

Total
hours in
record

Average
spike rate
(spikes/hour)

Total
hours in
record

Average
spike rate
(spikes/hour)

Wake 4.7 11 5.2 329
NREM1 0.7 31 1.5 670
NREM2 2.1 80 3.8 739
NREM3 1.4 62 3.1 903
REM 0 n/a 0.7 159
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sundowning, the phenomenon in which neuropsychiatric
symptoms are heightened late in the day (Peter-Derex
et al., 2015). Animal models of AD have also been re-
ported to show disturbances in the circadian cycle, some
of which overlap with patterns of circadian alterations
seen in patients (Huitrón-Reséndiz et al., 2002; Vloe-
berghs et al., 2004; Wisor et al., 2005; Jyoti et al., 2010;
Sterniczuk et al., 2010; Duncan et al., 2012; Roh et al.,
2012). Our findings of circadian modulation of network
hyperexcitability in AD raise the question of whether IIS
might causally contribute to the alterations in circadian-
coupled behavior observed in AD. Future work investigat-
ing the effects of anti-epileptic drugs on circadian
alterations in AD would go toward answering this.

Brain state modulation of network excitability
Here, we report that IIS in J20 animals are modulated

by �/�, with higher IIS rates seen in states of high �/�
during sleep. The spectral patterns of ECoG that we
report here are in line with previous reports in WT mice,

that have shown increases in cortical EEG � power in REM
sleep relative to wake and NREM (Brankack et al., 2010).
We also report transient increases in �/� in sleep in both
WT and J20 mice. Since these increases in �/� occur in
both WT and J20s, they are likely to be indicative of REM
sleep periods (Ewell et al., 2015). Given that J20 animals
with strong circadian phase coupling show highest IIS
rates during sleep this suggests that IIS in these animals
are associated with REM sleep.

An alternative explanation for the association between
IIS and high �/� during sleep may be that IIS occur during
ectopic � in sleep, in the absence of a concomitant drop
in muscle tonus. A phenomenon of ictal activity during ec-
topic � has been reported in a mouse model of Huntington’s
disease (Pignatelli et al., 2012). Without simultaneous EMG
recordings, the present data cannot conclusively distinguish
between REM states and ectopic �. In the human data,
analysis of �/� ratios showed that these were lowest
during periods of highest IIS frequency. This argues
against the idea of IIS coupled to ectopic � in humans,

A

B

C

D

E

Figure 7. Sleep stage coupling of mTL spiking in a human with aMCI, a suspected early stage of AD. A, Hypnogram showing the
patient’s sleep architecture, spanning from �7 P.M. on FOD1 to 9:15 A.M. on FOD2. B, Bar plot showing instantaneous mTL lobe
spike rates over the course of the recording. Bars are colored by sleep stage, with light green for Wake, light blue for NREM (includes
NREM1, NREM2, and NREM3), and dark blue for REM. The patient had three brief subclinical seizures (SZ) from the left FO electrodes
during this recording, the timing of which is depicted by red vertical bars. C–E, Plots showing (C) � power (0–4 Hz), (D) � power (4–12
Hz), and (E) �/� ratio of bilateral mTL activity, based on FO electrodes recordings. Dots represent the spectral power for each
nonoverlapping 30-s window of the recording. Power is measured in arbitrary units.
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although a more definitive assessment will require data
from more AD subjects as well as healthy elderly con-
trols.

Our finding of an association between IIS and high �/�
is in line with recent reports that young Tg2576 model of
AD as well as mice overexpressing WT-hAPP also dem-
onstrate IIS predominantly during states of high � which
the authors suggest is indicative of REM sleep (Kam et al.,
2016).

The findings that IIS in multiple mouse models of AD are
most likely to occur in REM-like states begs the question
of what makes REM a proictal state in these models. Both
REM sleep and the awake state share common features
of high �/� activity and high cholinergic tone (Vazquez and
Baghdoyan, 2001; Lee et al., 2005), yet IIS occur much
less frequently in the awake state in these models. There
are several potential explanations for this. Firing rates of
hippocampal neurons increase during REM (Grosmark
et al., 2012), which might contribute to the propensity to
seize. In addition, systems that normally show distinct
activity in REM sleep versus waking and NREM sleep
might contribute to the proictal REM state in these models
(Sedigh-Sarvestani et al., 2014; Ewell et al., 2015; Kam
et al., 2016). Unlike cholinergic neurons, which increase
their activity in both REM and waking, monoaminergic
neurons in brainstem nuclei (including the locus coeruleus
and the tuberomammillary nucleus) as well as the dorsal
raphe nucleus of the hypothalamus, show differential ac-
tivity between these brain states. These neurons are
highly active in waking, exhibit low firing rates in NREM
sleep, and are quiescent during REM sleep (Lee and Dan,
2012). It may be that brain state modulation of one or
more of these systems is disrupted in these mouse AD
models, and other forms of epilepsy which show REM
coupling (Sedigh-Sarvestani et al., 2014; Ewell et al.,
2015).

The present study quantified cholinergic neurons in MS
and DB. Cholinergic neurons in laterodorsal tegmental
and pedunculopontine tegmental nuclei of the pontomes-
encephalic tegmentum have been suggested to control
REM onset (Van Dort et al., 2015). In the rat, these neu-
rons have been shown to be active during both wake and
REM; however, firing rates are higher in REM, and corre-
late with �/� (Boucetta et al., 2014). Thus, changes to
these neurons are also potential candidates for mediating
the proictal nature of REM sleep in J20 mice.

Kam et al. (2016) reported that MS-DB cholinergic neu-
ron number was unchanged in young Tg2576 mice. How-
ever, they found evidence to support the notion that
overactivity of cholinergic neurons might contribute to IIS
by showing that antagonism of muscarinic receptors re-
duced IIS in these animals. Hence, they concluded that IIS
during REM might be the result of cholinergic hyperfunc-
tion. We did not find evidence for cholinergic changes in
J20 mice as quantified by the number of cholinergic neu-
rons in MS-DB, or AChE activity. If cholinergic activity is
indeed unaltered in J20 mice, future experiments using
muscarinic antagonism in J20 mice could be used to
investigate whether atropine can act to reduce IIS by

reducing overall neuronal excitability, rather than by re-
versing cholinergic hyperfunction.

Our assay of cholinergic function was based on mea-
surements of AChE enzymatic activity in brain homoge-
nate. There was no significant difference between AChE
levels in WT and J20, or with Donepezil treatment. While
it is possible that postmortem degradation of AChE could
have masked differences in AChE levels, the robust effect
of neostigmine supports the conclusion that the tissue
contained functional AChEs.

In a subset of our animals, IIS were weakly coupled to
the circadian cycle and the sleep-wake pattern but were
still modulated by �/�. This suggests that the relationship
between �/� and behavioral state might be disturbed in
these animals. It is possible that these animals also ex-
hibited greater disturbances in other elements of the cir-
cadian cycle, such as a circadian decoupling of sleep
quantity/quality.

During both REM and NREM, hippocampal neurons
have been shown to replay firing patterns that were ex-
perienced before sleep (Skaggs and McNaughton, 1996;
Louie and Wilson, 2001), and such precisely timed se-
quences are likely to be involved in the memory facilitation
role of sleep. IIS are thought to arise from depolarization
and synchronous firing of neurons. This firing is followed
by an inhibition and reduction of firing (Holmes and
Lenck-Santini, 2006). Thus, IIS during sleep are likely to
interfere with the coordinated replay of firing sequences,
and consequently, would be expected to contribute to
memory impairments. In support of this, it has recently
been shown that reducing IIS by treatment with anti-
epileptic drugs, rescues memory deficits in J20s (Sanchez
et al., 2012).

Relationship between IIS and AD pathology in
mouse models

Here we report that while IIS are prevalent in hAPP
overexpressing mice, APPNL/F mice that exhibit A� pa-
thology without APP overexpression, do not exhibit IIS at
two ages preceding widespread plaque deposition (eight
and 12 months). This finding is in line with other reports
that it is overexpression of hAPP that is causal in gener-
ating network hyperexcitability in these animal models
(Born et al., 2014; Xu et al., 2015; Kam et al., 2016). An
alternative explanation of the presence of IIS in J20 but
not APPNL/F mice may be differences in the levels of A�
between the two models. However, levels of soluble A� in
six-month-old J20 and 12-month-old APPNL/F are com-
parable, and levels of total 	� are higher in APPNL/F

(Shankar et al., 2009; Saito et al., 2014). Thus, it is unlikely
that higher levels of A� in the J20s are a cause of IIS in this
model.

Interestingly, APPNL/F mice begin to exhibit cognitive
deficits at eight months of age (Masuda et al., 2016),
which suggests that cognitive deficits at these ages are
not the result of IIS, as has been suggested for J20s
(Sanchez et al., 2012). Moreover, differences in the types
of memory affected in J20 and APPNL/F at ages preceding
overt plaque deposition have been reported. Specifically,
four- to six-month-old J20s show impairments in hip-
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pocampal dependent spatial memory (Sanchez et al.,
2012). In contrast, in eight-month-old APPNL/F mice, spa-
tial memory as assayed by a place preference task is
intact. However, place-avoidance memory, which is also
dependent on amygdala circuits (Wilensky et al., 2000), is
impaired (Masuda et al., 2016). It may be that hippocam-
pus dependent processes are susceptible to interference
by IIS while the disturbances in the nonhippocampal cir-
cuits result from processes independent of IIS.

Differential sleep-stage coupling between mouse
models of AD and human AD

Lam et al. (2017) recently used intracranial electrode
recordings to detect mTL IIS in two AD patients without a
history of epilepsy. Here, we report that in these patients,
IISs were predominantly associated with NREM sleep
(i.e., low �/�). In the patient with aMCI, IIS occurred most
frequently in NREM3 sleep and were least frequent in
REM, with a �4.5-fold difference in spike rates between
NREM3 and REM. In the AD patient, frequent IIS were
seen during NREM sleep, although REM sleep was absent
from this patient’s brief recording, in line with previous
reports of REM deficits in AD (Vitiello et al., 1984). Our
findings from intracranial electrodes in AD patients are
consistent with prior scalp EEG studies by Vossel et al.
(2016), who reported that epileptiform discharges are
highly prevalent in sleep stages �2 (although the authors
did not differentiate between REM and NREM sleep).
Although the means of characterising sleep differed be-
tween rodents and patients, combined, these results
point to important differences in sleep stage coupling of
epileptiform activity between rodent AD models and hu-
mans with AD and suggest that the specific mechanisms
that underlie hyperexcitability in AD may differ between
certain mouse models and humans.

Analysis of ictal and interictal activity in epilepsy pa-
tients has led the view that NREM sleep is a generally
proictal state, whereas REM sleep is an anti-ictal state
(Sammaritano et al., 1991; Herman et al., 2001; Minecan
et al., 2002; Ng and Pavlova, 2013). Many animal models
of epilepsy have also shown that seizures are more fre-
quent in NREM and rarely occur in REM (Shouse et al.,
2000). Interestingly, rodent models of the same type of
epilepsy can still exhibit differences in the sleep-stage
coupling of epileptiform activity. For example, in both the
kindling as well as the pilocarpine models of temporal
lobe epilepsy in rats, IIS are most common during NREM
sleep (Colom et al., 2006; Gelinas et al., 2016). In contrast,
rats with either the tetanus toxin or the low-dose kainate
models of temporal lobe epilepsy have seizures that occur
most commonly during REM sleep (Sedigh-Sarvestani
et al., 2014; Ewell et al., 2015). Based on this, we hypoth-
esize that different mouse models of AD may have specific
mechanisms underlying their network hyperexcitability, which
could be differentially expressed through sleep-stage cou-
pling of IIS. We propose that sleep-stage coupling of IIS
should be an important factor for identifying mouse AD
models that more closely resemble the EEG signature of
network hyperexcitability in human AD.
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